Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
China Journal of Chinese Materia Medica ; (24): 3440-3447, 2023.
Article in Chinese | WPRIM | ID: wpr-981479

ABSTRACT

With the rapid development of computer technology, numerical simulation has gradually become an important method to study drying process and improve drying equipment. Using computer to simulate the drying process of traditional Chinese medicine(TCM) is characterized by intuitiveness, scientificity, and low cost, which serves as an auxiliary means for technical innovation in TCM drying. This paper summarizes the theories of different drying methods and the research status of numerical simulation in drying, introduces the modeling methods and software of numerical simulation, and expounds the significance of numerical simulation modeling in shortening the research and development cycle, improving drying equipment, and optimizing drying parameters. However, the current numerical simulation method for drying process has problems, such as low accuracy, lack of quantitative indicators for the control of simulation results on the process, and insufficient in-depth research on the mechanism of drug quality changes. Furthermore, this paper put forward the application prospect of numerical simulation in TCM drying, providing reference for the further study of numerical simulation in this field.


Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal , Desiccation
2.
Journal of Biomedical Engineering ; (6): 1149-1157, 2022.
Article in Chinese | WPRIM | ID: wpr-970653

ABSTRACT

The small molecule nutrients and cell growth factors required for the normal metabolism of chondrocyte mainly transport into the cartilage through free diffusion. However, the specific mass transfer law in the cartilage remains to be studied. In this study, using small molecule rhodamine B as tracer, the mass transfer models of cartilage were built under different pathways including surface pathway, lateral pathway and composite pathway. Sections of cartilage at different mass transfer times were observed by using laser confocal microscopy and the transport law of small molecules within different layers of cartilage was studied. The results showed that rhodamine B diffused into the whole cartilage layer through surface pathway within 2 h. The fluorescence intensity in the whole cartilage layer increased with the increase of mass transfer time. Compared to mass transfer of 2 h, the mean fluorescence intensity in the superficial, middle, and deep layers of cartilage increased by 1.83, 1.95, and 3.64 times, respectively, after 24 h of mass transfer. Under lateral path condition, rhodamine B was transported along the cartilage width, and the molecular transport distance increased with increasing mass transfer time. It is noted that rhodamine B could be transported to 2 mm away from cartilage side after 24 h of mass transfer. The effect of mass transfer under the composite path was better than those under the surface path and the lateral path, and especially the mass transfer in the deep layer of cartilage was improved. This study may provide a reference for the treatment and repair of cartilage injury.


Subject(s)
Cartilage, Articular , Rhodamines/pharmacology , Chondrocytes
3.
China Journal of Chinese Materia Medica ; (24): 605-613, 2021.
Article in Chinese | WPRIM | ID: wpr-878885

ABSTRACT

In this study, Fick's first law and partition equilibrium were used to represent the internal and external mass transfer processes of Salviae Miltiorrhizae Radix et Rhizoma at the macroscopic level, and a mass transfer model was established. The specific surface area was integrated into the mass transfer resistance, which effectively avoided the irregular shape of medicinal materials and expanded the application scope of the model. Meanwhile, the mass transfer model was further combined with the kinetic model of salvia-nolic acid degradation to establish the extraction kinetic models of salvianolic acid B, lithospermic acid and Danshensu. The model was applied to study the extraction process of Salviae Miltiorrhizae Radix et Rhizoma. According to the sensitivity analysis results, the relative error of the model prediction was within 5% near the maximum extraction rate(320 min), and the prediction performance of the model was good. According to the investigation results of different process parameters, stirring could significantly accelerate the mass transfer rate of salvianolic acid B, while the mass transfer resistance and degradation rate constant were not affected by solvent-to-solid ratio. The linear relationship between the reciprocal of temperature and the logarithm of mass transfer resistance was good(R~2=0.996), indicating that the temperature and mass transfer resistance conformed to Arrhenius formula. In addition, we also found that the concentration changes of lithospermic acid and Danshensu were weakly affected by mass transferwhen the extraction temperature was higher than 358 K. This study has provided the basis for the process optimization and quality control of traditional Chinese medicine extraction.


Subject(s)
Drugs, Chinese Herbal , Kinetics , Medicine, Chinese Traditional , Rhizome , Salvia miltiorrhiza
4.
Electron. j. biotechnol ; 44: 47-57, Mar. 2020. tab, ilus, graf
Article in English | LILACS | ID: biblio-1087699

ABSTRACT

BACKGROUND: The determination of kinetic parameters and the development of mathematical models are of great interest to predict the growth of microalgae, the consumption of substrate and the design of photobioreactors focused on CO2 capture. However, most of the models in the literature have been developed for CO2 concentrations below 10%. RESULTS: A nonaxenic microalgal consortium was isolated from landfill leachate in order to study its kinetic behavior using a dynamic model. The model considered the CO2 mass transfer from the gas phase to the liquid phase and the effect of light intensity, assimilated nitrogen concentration, ammonium concentration and nitrate concentration. The proposed mathematical model was adjusted with 13 kinetic parameters and validated with a good fit obtained between experimental and simulated data. CONCLUSIONS: Good results were obtained, demonstrating the robustness of the proposed model. The assumption in the model of DIC inhibition in the ammonium and nitrate uptakes was correct, so this aspect should be considered when evaluating the kinetics with microalgae with high inlet CO2 concentrations.


Subject(s)
Carbon Dioxide/analysis , Microalgae/radiation effects , Microalgae/physiology , Kinetics , Weirs , Photons , Microalgae/isolation & purification , Microalgae/growth & development , Photobioreactors , Wastewater , Models, Biological , Nitrates , Nitrogen
5.
rev. udca actual. divulg. cient ; 22(1): e1151, Ene-Jun. 2019. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1094783

ABSTRACT

RESUMEN A pesar que diversos estudios se han llevado a cabo sobre modelamiento matemático de las cinéticas de secado de espagueti, no se han desarrollado para espaguetis con sustitución de sémola de trigo Triticum durum por pulpa de zapallo deshidratada (PZD), por lo tanto, el objetivo de esta investigación fue modelar las cinéticas de secado de espagueti sustituido parcialmente con PZD (5 y 10g/100g harina), evaluar el efecto de la sustitución y la temperatura (50 y 60°C), sobre el tiempo de secado (contenido de humedad final = 0,13g/g b.s.), la difusividad efectiva (De) y algunas características que definen la calidad del producto (contenido de humedad, calidad de cocción y contenido de carotenoides totales). Para ello, se emplearon modelos matemáticos reportados en la literatura, como también la segunda ley de Fick, para un cilindro infinito. Los resultados mostraron que los modelos Henderson & Pabis y el Logarítmico presentaron mayor ajuste (R2 ≥ 0,90) a las cinéticas de secado experimentales; por el contrario, el modelo de Lewis presentó el menor ajuste. Se obtuvieron tiempos de secado de 5,00-4,10h, para las cinéticas realizadas a 50°C y tiempos de secado de 3,40-2,80h (aproximadamente), para las cinéticas a 60°C. De varió desde 1,50 hasta 2,50 x 10-7 cm2s-1, la cual, aumentó con la temperatura. En definitiva, la calidad del espagueti se afectó negativamente con el aumento de PZD y positivamente con el aumento de la temperatura de secado.


ABSTRACT Although several studies have been carried out on mathematical modeling of the spaghetti drying kinetics, they have not been developed for spaghetti with an incorporation of Triticum durum wheat semolina by dehydrated squash pulp (DSP). Therefore, the objective of this investigation was to model the kinetics of spaghetti drying partially substituted with DSP (5 and 10g/100g flour), to evaluate the effect of substitution and temperature (50 and 60°C), on the time of drying (final moisture content = 0.13g/g d.b.), the effective diffusivity (De) and some characteristics that define the quality of the product (moisture content, cooking quality and total carotenoid content). For this, mathematical models reported in the literature were used, as well as the second law of Fick for an infinite cylinder. The results showed that the Henderson & Pabis and the Logarithmic models presented greater adjustment (R2 ≥ 0.90) to the experimental drying kinetics. On the contrary, the Lewis model presented the smallest adjustment. Drying times of 5.00-4.10h were obtained for the kinetics carried out at 50°C and drying times of 3.40-2.80h (approximately) for the kinetics at 60°C. It varied from 1.50 to 2.50 x 10-7cm2s-1, which increased with temperature. Finally, the spaghetti quality was negatively affected with the increase in PZD and positively with the increase in the drying temperature.

6.
China Journal of Chinese Materia Medica ; (24): 880-884, 2019.
Article in Chinese | WPRIM | ID: wpr-771491

ABSTRACT

Health food containing Chinese materia medica has many advantages in health preservation and reducing the risk of disease occurrence,which meets people's demands for " great health" and " preventive treatment of disease". However,due to its complex ingredients,diverse quality of raw materials,as well as the vagueness and lack of integrity for existing quality standards,chaos is caused in the health food market,which restricts its healthy development and also poses new challenges to the quality control of healthy food. At present,the total component content or single component content is determined in most functional/marker component examinations. Safety and microbial detection methods fail to cover the contamination range of the raw materials of Chinese materia medica.Therefore,it is impossible to meet the purpose of ensuring authenticity,safety and efficacy. In recent years,a lot of Chinese materia medica extracts have been used as raw materials for food products,but many extracts lack standards. The author believes that the quality control of health food containing Chinese materia medicas should start with the quality control of Chinese materia medica extracts. In this way,product quality is controlled from source to ensure product consistency; secondly,the overall quality control should be strengthened to ensure the authenticity of the products; the scope of safety inspection shall be expanded to fundamentally ensure the safety of products. At the same time,we should strengthen the quality control of whole process and strengthen the overall quality control of raw materials to produce health food of high quality.


Subject(s)
Food , Reference Standards , Materia Medica , Reference Standards , Medicine, Chinese Traditional , Quality Control , Research Design
7.
China Journal of Chinese Materia Medica ; (24): 4433-4438, 2018.
Article in Chinese | WPRIM | ID: wpr-775324

ABSTRACT

Based on the nanofiltration mass transfer model, the enhanced separation behavior of ephedrine in organic solution was studied. In the experiment, the sensitive region of ethanol concentration and pH on the rejection of ephedrine was screened out by Box-Behnken central composite experiment design. Furthermore, to analyze the separation regularity of ephedrine and organic solution, the correlation between mass transfer coefficient and concentration of organic solvent was fitted with the changed organic solution by nanofiltration mass transfer mathematical model. Experiments showed the enhanced separation behavior, the decrease in the mass transfer coefficient while the increase in ethanol concentration from 20% to 40%, MWCO at 450 and pH 6.0. Under the same conditions, the enhanced separation behavior was appeared as the solvent changed into methanol and acetonitrile, the enhanced effect was positively correlated with the concentration of the three common organic solvents, and the effect order was acetonitrile>ethanol>methanol. This study took ephedrine as an example, and explored the mechanism of nanofiltration separation in the environment of organic solution, so as to provide references for nanofiltration separation for heat-sensitive traditional Chinese medicine of alkaloid.


Subject(s)
Ephedrine , Chemistry , Ethanol , Methanol , Molecular Weight , Solvents
8.
China Journal of Chinese Materia Medica ; (24): 1453-1458, 2018.
Article in Chinese | WPRIM | ID: wpr-687277

ABSTRACT

Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids.

9.
Chinese Traditional and Herbal Drugs ; (24): 5070-5075, 2018.
Article in Chinese | WPRIM | ID: wpr-851588

ABSTRACT

Objective To explore the enhanced separation behavior of ferulic acid in organic solution by nanofiltration. Methods In the experiment, molecular weight cut-off (MWCO) of nanofiltration membrane, ethanol concentration, and solution pH were selected as influencing factors to find the sensitive region of ethanol concentration and pH on the retention rate of ferulic acid with Box-Behnken central composite experiment design. And then, the separation rule of ferulic acid with organic solution was analyzed, the correlation between mass transfer coefficient and concentration of organic solvent was fitted with the changed organic solution by nanofiltration mass transfer mathematical model. Results Experiments indicated that the enhanced separation behavior appeared and the mass transfer coefficient decreased as the ethanol concentration increased from 20% to 40% with MWCO 450 and pH 8.0. Under the same condition, the enhanced separation behavior happened as the solvent was changed into methanol and acetonitrile, and the enhanced effect was positively correlated with the concentration of the three common organic solvents, the effect rule was ethanol ≈ methanol > acetonitrile material. Conclusion The enhanced separation effect of nanofiltration was related to the type and concentration of organic solvent. And taking ferulic acid as an example, the mechanism of nanofiltration separation in the environment of organic solution was studied, and the results provided references for nanofiltration concentrate for heat-sensitive traditional Chinese medicine of phenolic acid in organic solution.

10.
Vitae (Medellín) ; 25(1): 8-16, 2018. Ilustraciones
Article in English | LILACS, COLNAL | ID: biblio-994917

ABSTRACT

Background: in Colombia the consumption of fresh green mango (also known as mango "biche") is quite popular, and is consumed with lemon juice, salt, and honey. However, its high humidity content and high water activity makes of mango a highly perishable fruit, thus requiring processing alternatives. Osmotic dehydration (OD) is an interesting alternative for the conservation of mango. In OD, binary solutions (Solute + water) and ternary solutions (2 Solutes + water), have been traditionally used, however, more water removal can be achieved using ternary solutions, which leads to the improved organoleptic properties of dehydrated products. Objetives: to evaluate the kinetic water loss (WL), solutes gain (SG), weight reduction (WR), water activity (aw), and volume (Shrinking Coefficient, SC)) in green mango (Mangifera indica L. Filipino variety) osmotically dehydrated (OD). Additionally, to calculate water and solutes diffusivity (Def) for each treatment. Methods: green mango samples, with maturity scale zero, were used. Ternary solutions of sucrose at 40% and NaCl at 3, 6 and 9% were used for OD. The binary solution of sucrose with water as control treatment, was used. In the osmotic process samples were taken out at different times of OD (15, 30, 60, 90, 180, 240, and 300 min). Results: the findings show that at a higher concentration of NaCl, the dehydration kinetics was more rapid, aw and SC were smaller and water and solutes Def were higher. The samples dehydrated with the greatest solutes concentration (40 - 9%) reached the highest WL, SG, and WR with 89.52, 13.10, and 46.68%, respectively. Coefficients Defw and Defs showed a magnitude order of 10-10 m2/s, which is within the interval of dehydrated foods. Conclusions: this research showed that binary (sucrose + water) and ternary (NaCl + sucrose + water) solutions, are suitable for dehydrating green mango, however, the ternary solutions were more effective.


Antecedentes: en Colombia el consumo de mango verde fresco (también conocido como mango "biche") es popular, y se consume con zumo de limón, sal y miel. Sin embargo, su alto contenido de humedad y alta actividad de agua hace que el mango sea un fruto altamente perecedero, por lo que requiere alternativas de procesamiento. La deshidratación osmótica (OD) es una interesante alternative para la conservación de mango. En OD se utilizan tradicionalmente soluciones binarias (solute + agua) y soluciones ternarias (2 solutos + agua), sin embargo, puede removerse mayor cantidad de agua utilizando soluciones ternarias, las cuales permiten mejorar las propiedades organolépticas de productos deshidratados. Objetivos: evaluar las cinéticas de pérdida de agua (WL), ganancia de solutos (SG), reducción de peso (WR), actividad de agua (aw) y volumen (coeficiente de encogimiento, SC) en muestras de mango verde (Mangifera indica L. Variedad filipino) deshidratadas osmóticamente (OD). Adicionalmente, calcular la difusividad (Def) del agua y de solutos, en los distintos tratamientos. Métodos: se usaron mangos verdes con escala de madurez cero. En la OD se usaron soluciones ternarias compuestas por sacarosa (40%) y NaCl al 3, 6 y 9%. Como tratamiento control se usó una solución binaria de sacarosa más agua. En el proceso osmótico las muestras fueron tomadas a diferentes tiempos de OD (15, 30, 60, 90, 180, 240, and 300 min). Resultados: los resultados mostraron que al incrementar la concentración de NaCl, las WL fueron más rápidas, la aw y el SC fueron menores y las de agua y solutos mayores. Las muestras deshidratadas con la máxima concentración de solutos (40-9%), alcanzaron las mayores WL, SG y WR con valores de 59.82, 13.10 y 46.68%, respectivamente. Los coeficientes Defw and Defs mostraron orden de magnitude de 10-10 m2/s, valor que se encuentra en el intervalo para alimentos deshidratados. Conclusiones: esta investigación mostró que soluciones binarias (sacarosa + agua) y ternarias (NaCl + sacarosa + agua) son adecuadas para deshidratar mango verde, sin embargo, las soluciones ternarias fueron más efectivas.


Subject(s)
Humans , Mangifera , Sucrose , Sodium Chloride , Food Preservation
11.
World Science and Technology-Modernization of Traditional Chinese Medicine ; (12): 686-693, 2017.
Article in Chinese | WPRIM | ID: wpr-695947

ABSTRACT

This paper was aimed to study the moisture adsorption of Chinese herbal medicine ingredients at different environment.The film mass transfer model and Fick's second law were applied to evaluate the moisture diffusion for Chinese herbal medicine ingredients.The results showed that under the temperature of 25℃ and 50% relative humidity,the diffusion coefficient of 13 medicine ingredients reached the highest.The diffusivity was controlled by film mass transfer.However,both film mass transfer and Fick's second law can be existed at the same time under different temperature and humidity.It was concluded that the diffusion of water in the traditional Chinese medicine might have been driven by a variety of diffusion mechanism,which was obviously affected by environmental factors.

12.
China Journal of Chinese Materia Medica ; (24): 4598-4603, 2017.
Article in Chinese | WPRIM | ID: wpr-338231

ABSTRACT

Based on the solution-diffusion effect and the charge effect theory in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient was constructed to establish a mathematic model of synephrine in mass transfer process and verify its applicability. The experimental results showed that there was a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. Besides, mass transfer coefficient and initial concentration of synephrine showed power function correlation with each other by solution-diffusion effect and the charge effect, and the regression coefficients were greater than 0.9. The mass transfer coefficient of dissociation synephrine was less than that in the state of free and free-dissociation. Moreover, on the basis of power function relationship between mass transfer coefficient and initial concentration, the results showed that the predicted rejections of synephrine from Citrus aurantium water extract by use of the mathematical model approximated well to real ones, verifying that the model was practical and feasible. The unclear separation mechanism of nanofiltration for alkaloids was clarified preliminary by the predicted model of nanofiltration separation with synephrine as the example, providing theoretical and technical support for nanofiltration separation, especially for traditional Chinese medicine with alkaloids.

13.
Chinese Traditional and Herbal Drugs ; (24): 3986-3991, 2017.
Article in Chinese | WPRIM | ID: wpr-852488

ABSTRACT

Objective To explore the correlation of molecular state of caffeic acid from Perilla frutescens and its nanofiltration mass transfer process. Methods The pH value of solution was changed and the free-dissociation ratio was adjusted with caffeic acid as an index, the rejection and membrane flux of the corresponding initial concentration and operating pressure in different existence conditions were collected. Based on the solution-diffusion effect and charge effect in nanofiltration separation, the linear equations between the rejection and mass transfer coefficient was constructed, the correlation between mass transfer coefficient and initial concentration was established, the mathematical models which based on the operating pressure and initial concentration to predict the rejection of caffeic acid was developed and used to verify its applicability by aqueous extract of P. frutescens. Results Experiments indicated that there was a linear relationship between operation pressure and membrane flux. Besides, mass transfer coefficient and initial concentration of caffeic acid were positively correlated with each other by solution-diffusion effect and charge effect. The mass transfer coefficient of dissociated caffeic acid was less than those of free state and free-dissociation. Moreover, on the basis of power function relationship between mass transfer coefficient and initial concentration, the results showed that the predicted rejections of caffeic acid from P. frutescens water extract using mathematical model approximate well to real ones. Conclusion The mass transfer coefficient of caffeic acid is associated with existential state and initial concentration. The predicted model of nanofiltration separation has a preferable applicability to caffeic acid and provides references for nanofiltration separation, especially for heat-sensitive traditional Chinese medicine.

14.
Chinese Traditional and Herbal Drugs ; (24): 1719-1723, 2011.
Article in Chinese | WPRIM | ID: wpr-855531

ABSTRACT

Objective: To investigate the influence of microwave radiation on the extraction of epimedin B from Epimedii Folium. Methods: The effects of extraction solvent, ratio of material to liquor, and duration of microwave radiation on the extraction yield of epimedin B were studied by single factor tests. The influence of microwave radiation on the stability of epimedin B was assessed by UV-Vis spectrophotometeric analysis. The impacts of microwave radiation on leaf sample were observed using paraffin section method. Results: The contributions of ethanol concentration and duration of microwave radiation for the extraction yield of epimedin B are significant, whereas ratio of material to liquor is not a significant factor. Microwave radiation could result in the disruptions of leaf tissues and other parts, but it did not affect the stability of epimedin B. Conclusion: Microwave radiation could facilitate the extraction of epimedin B, which might result from the enhancement of the mass transfer of ethanol solution into leaf tissues and dissolution of epimdin B from the matrix.

15.
Rev. colomb. biotecnol ; 12(2): 124-138, dic. 2010. ilus, tab, graf
Article in Spanish | LILACS | ID: lil-590779

ABSTRACT

En fermentaciones aerobias el oxígeno, como aceptor terminal de electrones en el proceso de respiración, comúnmente se constituye en limitante debido entre otros factores al diseño del biorreactor (factores geométricos), a las condiciones de operación de los fermentadores (condiciones ambientales requeridas en el cultivo, potencia transferida al cultivo por el sistema de agitación, propiedades del medio líquido), demanda de oxígeno por parte del microorganismo, sistema de aireación (concentración de oxígeno en el gas, solubilidad del oxígeno). La limitación de oxígeno se refleja en la fermentación con Lactococcus lactis cepa IBUN 34.1, en que presenta una baja disponibilidad de oxígeno desde muy temprano en la fase exponencial del cultivo. Para superar estas limitaciones se diseñó y desarrolló un sistema de suministro de oxígeno de alta tasa de transferencia, consistente en un sistema de fermentación con aireación externa (SFAE), el cual es comparado en este trabajo con el sistema tradicional de fermentador agitado dotado con dos turbinas tipo Rushton y aireación por difusor interno. En este trabajo se evalúa la operación del SFAE, se seleccionan y estudian algunas variables operacionales y su efecto sobre la transferencia de oxígeno gas-líquido. Los resultados indican que las variables que tienen efecto significativo sobre el coeficiente volumétrico global de transferencia de masa kLa son la agitación y el flujo de medio de cultivo que circula por el aireador externo denominado flujo de recirculación. Los valores de kLa obtenidos indican que con el fermentador convencional con aireación interna el mayor valor de kLa alcanzado fue de 40,68 (h-1), en tanto que con el SFAE se alcanzaron valores de 63,18 (h-1).


In aerobic fermentations, oxygen as terminal electron acceptor in respiration process, is commonly a limiting due to factors like its low solubility in aqueous solutions, bioreactors’ geometric factors and operating characteristics, liquid media properties, oxygen concentration in gas supply, microorganisms’ characteristics, environmental culture conditions, power supply by agitation system, etc. Oxygen limitation is present in cultures using the IBUN 34.1 Lactococcus lactis strain where oxygen availability is low some minutes after the exponential phase starts. A high transfer rate oxygen supply system was thus designed to overcome such limitations; it consisted of an external aeration fermentation system (EAFS) which was compared in this work with a conventional agitated tank fermenter equipped with two Rushton turbines and internal diffuser aeration flute mechanism.This paper evaluates the EAFS; some operational variables were selected and studied as well as their effect on oxygen transfer. Our results showed that agitation and culture medium flow through the aerator (called external recirculation flow) were the variables having the main effect on overall volumetric mass transfer coefficient (kLa). The highest kLa value in the conventional bioreactor having internal aeration was 40.68 kLa (h-1), while the EAFS reached 90 (h-1).


Subject(s)
Oxygen Transfer/analysis , Oxygen Transfer/adverse effects , Oxygen Transfer/methods , Bioreactors/adverse effects , Bioreactors/microbiology , Bioreactors/parasitology , Bioreactors/virology
16.
Eng. sanit. ambient ; 13(2): 189-197, abr.-jun. 2008. ilus, graf, tab
Article in Portuguese | LILACS | ID: lil-486655

ABSTRACT

Neste trabalho estuda-se a transferência de massa gás-líquido a partir de bolhas de ar para a água, geradas por um difusor de ar, em uma coluna de aeração, mudando a vazão de ar de 400 L/h a 2000 L/h, o nível de água de 0,50 m a 1,80 m, cujas taxas de aplicação superficial de ar variaram de 3,1 L/m².s a 15,4 L/m².s. Várias características hidrodinâmicas foram medidas, tal como a velocidade ascensional das bolhas de ar e seus diâmetros, fundamentais para verificar o coeficiente de transferência de massa que estão na literatura, usando um equipamento laser para velocimetria não-intrusiva. Após os estudos da transferência de massa, foi concluído que a vazão de ar entre 400 L/h e 800 L/h e o nível de água de 1,80 m apresentou a maior eficiência de transferência de massa, garantindo para estas medidas, dentro da coluna em estudo, maior quantidade de oxigênio dissolvido.


The present work is a study of the mass transfer gas-liquid from air bubbles into water, generated by a diffuser of air, in a column of aeration, changing the air flow from 400 L/h to 2000 L/h, the level of water from 0.50 m to 1.80 m, whose taxes of superficial application of air had varied of 3.1 L/m².s to 15.4 L/m².s. Several hydrodynamics characteristics were measured, such as the velocity range of the air bubbles and their diameter, fundamental to check the mass transfer coefficient that are in literature, by using a laser equipment for non-intrusive velocimetry. After of the study of the mass transfer, it was concluded that the air flow between 400 L/h and 800 L/h and the level of water of 1.80 m was the most efficient of mass transfer, guaranteeing for these measure, into of the column in study, most quantity of dissolved oxygen.

17.
Chinese Traditional Patent Medicine ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-574127

ABSTRACT

AIM: Supercritical CO_2 extraction of Rhizoma Chuanxiong volatile oil was studied under conditions of extraction temperature between 33-48 ℃,pressure between 10-25 MPa and CO_2 flow rate between 2-4 L?min -1 .Influence of extraction conditions on solubility and mass transfer rate were analyzed. METHODS: Based on plug flow in fixed bed,experimental extraction curves were evaluated using a model put forward by Stastova.And the effects of extraction conditions on mass transfer coefficients were also analyzed. RESULTS: Coefficient of mass transfer was slowly increased as the extraction temperature elevated,and was in accord with flow and in contrast with pressure. CONCLUSION:The method has a practical use value in the extraction of Rhizoma Chuanxiong volatile oil.

SELECTION OF CITATIONS
SEARCH DETAIL